AAT Bioquest/trFluor? Tb goat anti-rabbit IgG (H+L) *Cross Adsorbed*/16726/100 ug
二抗
商品編號
16726
品牌
AAT Bioquest
公司
AAT Bioquest
公司分類(lèi)
Fluorescent Anti-IgGs
Size
100 ug
商品信息
Overview
Printer Friendly Version
Ex/Em (nm)
330/544
MW
N/A
CAS #
N/A
Solvent
Water
Storage
F/D/L
Category
Immunology
Fluorescent Anti-IgGs
Related
iFluor? Dyes and Kits
Tag Antibodies
Biochemical Assays
Many
BIOLOG
ical compounds present in cells, serum or other
BIOLOG
ical fluids are naturally fluorescent, and thus the use of conventional, prompt fluorophores leads to serious limitations in assay sensitivity due to the high background caused by the autofluorescence of the
BIOLOG
ical molecules to be assayed. The use of long-lived fluorophores combined with time-resolved detection (a delay between excitation and emission detection) minimizes prompt fluorescence interferences. Our trFluor? Tb probes enable time-resolved fluorometry (TRF) for the assays that require high sensitivity. trFluor? Tb probes have large Stokes shifts and extremely long emission half-lives when compared to more tr
ADI
tional fluorophores such as Alexa Fluor or cyanine dyes. Compared to the other TRF compounds, our trFluor? Tb probes have relatively high st
ABI
lity, high emission yield and
ABI
lity to be linked to biomolecules. This trFluor? Tb goat anti-rabbit IgG (H+L) conjugate is commonly used as a second step reagent for indirect immunofluorescent staining, when used in conjunction with primary antibodies.
Spectrum
Advanced Spectrum Viewer
#xAxis div{
display: inline-block;
position: relative; left: 0;
margin: 0px 35.5px; padding: 5px;
}
#graphContainer{
display: inline-block; white-space: nowrap;
margin: 0 auto;
}
#visIBLeSpectrum{
display:block; margin-left:50px; padding-right:150px; background-color:#000; height:10px; width:653px;
}
#yAxis{
display:inline-block; height:220px; width:50px;
}
#graphArea{
display:inline-block; border-left:solid 3px black; border-bottom:solid 2px black; position:relative; height:220px; width:650px
}
#graphGrid{
position:absolute; top:0; left:0; height:220px; width:650px; overflow:hidden;
}
#graphGrid path{
shape-rendering:crispEdges;
}
#graphContent{
position:absolute; top:0; left:0; height:220px; width:650px;
}
#hoverText{
white-space:normal;
background-color:#EFEFEF;
display:inline-block;
width:150px; height:222px;
border-left:solid 1px #AFAFAF; border-bottom:solid 2px black; border-right:solid 1px #AFAFAF;
vertical-align:top; font-size:14px; text-align:center; padding:5px 15px;
box-sizing:border-box;
line-height:150%;
}
.noselect{
-webkit-touch-callout: none; /* iOS Safari */
-webkit-user-select: none; /* Safari */
-khtml-user-select: none; /* Konqueror HTML */
-moz-user-select: none; /* Firefox */
-ms-user-select: none; /* Internet Explorer/Edge */
user-select: none; /* Non-prefixed version, currently supported by Chrome and Opera */
}
Sorry, your browser does not support inline SVG.
Relative Intensity (%)
100
80
60
40
20
0
Sorry, your browser does not support inline SVG.
#grid{
stroke: #DFDFDF; stroke-width: 1;
}
Sorry, your browser does not support inline SVG.
.graphLine{
fill-opacity:0.5;
stroke-opacity:0.75;
}
.graphLine:hover{
fill-opacity:0.75;
stroke-opacity:1;
}
Sorry, your browser does not support inline SVG.
Move mouse over grid to display wavelength & intensity values.
300
400
500
600
700
800
900
Wavelength (nm)
References & Citations
Printer Friendly Version
1.???Saville
L, Spais C, Mason JL, Albom MS, Murthy S, Meyer SL, Ator MA, Angeles TS, Husten
J. (2012) Time-Resolved Fluorescence Resonance Energy Transfer as a Versatile
Tool in the Development of Homogeneous Cellular Kinase Assays. Assay Drug Dev
Technol.
2.???Lo
MC, Ngo R, Dai K, Li C, Liang L, Lee J, Emkey R, Eksterowicz J, Ventura M,
Young SW, Xiao SH. (2012) Development of a time-resolved fluorescence resonance
energy transfer assay for cyclin-dependent kinase 4 and identification of its
ATP-noncompetitive inhibitors. Anal Biochem, 421, 368.
3.???Paila
YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. (2011) Oligomerization of
the
SERO
tonin(1A) receptor in live cells: a time-resolved fluorescence anisotropy
approach. J Phys Chem B, 115, 11439.
4.???Martikkala
E, Rozwandowicz-Jansen A, Hanninen P, Petaja-Repo U, Harma H. (2011) A
homogeneous single-label time-resolved fluorescence cAMP assay. J Biomol
Screen, 16, 356.
5.???Gaborit
N, Larbouret C, Vallaghe J, Peyrusson F, Bascoul-Mollevi C, Crapez E, Azria D,
Chardes T, Poul MA, Mathis G, Bazin H, Pelegrin A. (2011) Time-resolved
fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of
EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy
using monoclonal antibodies. J Biol Chem, 286, 11337.
6.???Leyris
JP, Roux T, Trinquet E, Verdie P, Fehrentz JA, Oueslati N, Douzon S, Bourrier
E, Lamarque L, Gagne D, Galleyrand JC, M'Kadmi C, Martinez J, Mary S, Baneres
JL, Marie J. (2011) Homogeneous time-resolved fluorescence-based assay to
screen for ligands targeting the growth hormone secretagogue receptor type 1a.
Anal Biochem, 408, 253.
7.???Posokhov
YO, Kyrychenko A, Ladokhin AS. (2010) Steady-state and time-resolved
fluorescence quenching with transition metal ions as short-distance probes for
protein conformation. Anal Biochem, 407, 284.
8.???Alvarez-Curto
E, Ward RJ, Pediani JD, Milligan G. (2010) Ligand regulation of the quaternary
organization of cell surface M3 muscarinic acetylcholine receptors analyzed by
fluorescence resonance energy transfer (FRET) imaging and homogeneous
time-resolved FRET. J Biol Chem, 285, 23318.
9.???Kota
S, Scampavia L, Spicer T, Beeler AB, Takahashi V, Snyder JK, Porco JA, Hodder
P, Strosberg AD. (2010) A time-resolved fluorescence-resonance energy transfer
assay for identifying inhibitors of hepatitis C virus core dimerization. Assay
Drug Dev Technol, 8, 96.
10.???Visser
AJ, Laptenok SP, Visser NV, van Hoek A, Birch DJ, Brochon JC, Borst JW. (2010)
Time-resolved FRET fluorescence spectroscopy of vis
IBL
e fluorescent protein
pairs. Eur Biophys J, 39, 241.
View All As PDF
產(chǎn)品貨號:3204.0